Measurement and Uncertainty

What is a Measurement?

- A measurement tells us about a property of something
 - how heavy an object is
 - how hot
 - how long it is
- A measurement gives a number to that property

- Measurements are always made using an instrument of some kind
 - rulers
 - stopwatches
 - balances
 - thermometers

- The result of a measurement is in two parts: a number and a unit of measurement
 - 2 m
 - 20 °C
 - 15 ms⁻¹

What is Not a Measurement?

- There are some processes that might seem to be measurements, but are not
 - comparing two pieces of string to see which is longer
 - counting

What is uncertainty of measurement?

- The uncertainty of a measurement tells us something about its quality.
- Uncertainty of measurement is the doubt that exists about the result of any measurement

- You might think that well-made rulers, clocks and thermometers should be trustworthy, and give the right answers.
- But for every measurement even the most careful there is always a margin of doubt.

Expressing uncertainty of measurement

- Since there is always a margin of doubt about any measurement, we need to ask 'How big is the margin?' and 'How bad is the doubt?'
- Two numbers are needed to quantify an uncertainty
 - the width of the margin, or *interval*
 - the other is a $\ensuremath{\textit{confidence level}}$

• For example:

- the length of a certain stick measures 20 cm plus or minus 1 cm, at the 95 percent confidence level
 - 20 cm ±1 cm, at a level of confidence of 95%.
- The statement says that we are 95 percent sure that the stick is between 19 cm and 21 cm long
- Note: For our purposes, all of our measurements will be at the 95% confidence level, so we don't need to specify that

Error versus Uncertainty

- *Error* is the difference between the measured value and the 'true value' of the thing being measured
- **Uncertainty** is a quantification of the doubt about the measurement result

- Whenever possible we try to correct for any known errors
 - Properly calibrating equipment
 - $-\operatorname{\mathsf{Redoing}}$ measurements that were incorrect
 - Reading the volume on a graduated cylinder at the same angle each time
- Any error whose value we do not know is a source of uncertainty

Why is uncertainty of measurement important?

- You need to understand the results of a particular experiment
 - Trends may or may not exist depending on how certain your results are
- You may need to meet a certain tolerance
 - Parts manufactures need to make sure that the things they make are the correct size within a small amount of uncertainty

Where do errors and uncertainties come from?

- The measuring instrument
 - bias
 - changes due to ageing and wear
 - poor readability
 - noise (for electrical instruments)

- The item being measured
 - The item may change over time
 the size of an ice cube in a warm room
- · The measurement process
 - the measurement itself may be difficult to make
 - measuring the weight of small but lively animals
- · 'Imported' uncertainties
 - calibration of your instrument has an uncertainty which is then built into the uncertainty of the measurements you make

- Operator skill
 - one person may be better than another at setting up a measurement
 - reading fine detail by eye
 - the use of a stopwatch depends on the reaction time of the operator
- · Sampling issues
 - the measurements you make must be properly representative of the process you are trying to assess
 - If you want to know the temperature at the workbench, don't measure it with a thermometer placed on the wall near an air conditioning outlet.

• The environment

 temperature, air pressure, humidity and many other conditions can affect the measuring instrument or the item being measured

Types of Uncertainty

• Random

- where repeating the measurement gives a randomly different result
- the more measurements you make, and then average, the better estimate you generally can expect to get

Systematic

- where the same influence affects the result for each of the repeated measurements (but you may not be able to tell).
- you learn nothing extra just by repeating measurements
- other methods are needed to estimate uncertainties due to systematic effect
 - graphing your results and seeing if the trend line goes through the origin

What is not a measurement uncertainty?

- Mistakes made by operators are not measurement uncertainties
 - They should be avoided by working carefully and by checking work
- Accuracy (or inaccuracy)
 - This is a qualitative term indicating whether the measurement was made properly and carefully

- For a digital single reading the uncertainty will usually be given by the manufacturer
- If that is not available, then we will estimate it to be the smallest division

Attar and an

 $220.8\pm0.1\,\mathrm{V}$

aasuring-temperature/lood-scale

• For multiple measurements, the uncertainty of the average (mean) will be estimated to be

maximum value – minimum value

number of measurements

 Data

 25.3 cm

 24.8 cm

 25.2 cm

 25.6 cm

 25.5 cm