
\qquad
\qquad
\qquad

What is a Measurement?

- A measurement tells us about a property \qquad of something
- how heavy an object is
- how hot
- how long it is
- A measurement gives a number to that property
- Measurements are always made using an instrument of some kind
- rulers \qquad
- stopwatches
- balances
- thermometers
- The result of a measurement is in two parts: a number and a unit of measurement
-2 m
$-20^{\circ} \mathrm{C}$
$-15 \mathrm{~ms}^{-1}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What is Not a Measurement?

\qquad

- There are some processes that might seem to be measurements, but are not
- comparing two pieces of string to see which is longer
- counting \qquad
\qquad
\qquad
\qquad

What is uncertainty of

 measurement?- The uncertainty of a measurement tells us something about its quality.
- Uncertainty of measurement is the doubt that exists about the result of any \qquad measurement
- You might think that well-made rulers, \qquad clocks and thermometers should be trustworthy, and give the right answers.
- But for every measurement - even the most careful - there is always a margin of
\qquad doubt.

Expressing uncertainty of measurement

- Since there is always a margin of doubt about any measurement, we need to ask 'How big is the margin?' and 'How bad is the doubt?'
- Two numbers are needed to quantify an uncertainty \qquad
- the width of the margin, or interval
- the other is a confidence level \qquad
\qquad
- For example:
- the length of a certain stick measures 20 cm plus or minus 1 cm , at the 95 percent confidence level
- $20 \mathrm{~cm} \pm 1 \mathrm{~cm}$, at a level of confidence of 95%.
- The statement says that we are 95 percent sure that the stick is between 19 cm and 21 cm long
- Note: For our purposes, all of our measurements will be at the 95% confidence level, so we don't need to specify that

Error versus Uncertainty

- Error is the difference between the measured value and the 'true value' of the thing being measured
- Uncertainty is a quantification of the doubt about the measurement result
- Whenever possible we try to correct for \qquad any known errors
- Properly calibrating equipment \qquad
- Redoing measurements that were incorrect
- Reading the volume on a graduated cylinder
\qquad at the same angle each time
- Any error whose value we do not know is a source of uncertainty

Why is uncertainty of measurement important?

- You need to understand the results of a particular experiment
- Trends may or may not exist depending on how certain your results are \qquad
- You may need to meet a certain tolerance
- Parts manufactures need to make sure that \qquad the things they make are the correct size within a small amount of uncertainty

Where do errors and uncertainties come from?

- The measuring instrument
- bias \qquad
- changes due to ageing and wear
- poor readability
- noise (for electrical instruments)
- The item being measured
- The item may change over time
\qquad
- the size of an ice cube in a warm room
- The measurement process
- the measurement itself may be difficult to make
- measuring the weight of small but lively animals
- 'Imported' uncertainties
- calibration of your instrument has an uncertainty which is then built into the uncertainty of the measurements you make

- Operator skill

- one person may be better than another at setting up a measurement \qquad
- reading fine detail by eye
- the use of a stopwatch depends on the reaction time of the operator
- Sampling issues \qquad
- the measurements you make must be properly representative of the process you are trying to assess
- If you want to know the temperature at the workbench, don't measure it with a thermometer placed on the wall near an air conditioning outlet.
- The environment
- temperature, air pressure, humidity and many other conditions can affect the measuring instrument or the item being measured

Types of Uncertainty

- Random

- where repeating the measurement gives a randomly different result
- the more measurements you make, and then average, the better estimate you generally \qquad can expect to get

- Systematic

- where the same influence affects the result for each of the repeated measurements (but you may not be able to tell).
- you learn nothing extra just by repeating measurements
- other methods are needed to estimate uncertainties due to systematic effect
- graphing your results and seeing if the trend line goes through the origin

What is not a measurement uncertainty?

- Mistakes made by operators are not measurement uncertainties \qquad
- They should be avoided by working carefully and by checking work \qquad
- Accuracy (or inaccuracy)
- This is a qualitative term indicating whether the measurement was made properly and carefully

Estimating Uncertainty

\qquad

- For an analog single measurement we will \qquad estimate the uncertainty to be one-half of the smallest indicator on the scale \qquad

- For a digital single reading the uncertainty will usually be given by the manufacturer
- If that is not available, then we will \qquad estimate it to be the smallest division

[^0]\qquad
\qquad
\qquad
\qquad
\qquad

- For multiple measurements, the uncertainty of the average (mean) will be estimated to be maximum value - minimum value
number of measurements

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: $220.8 \pm 0.1 \mathrm{~V}$

